High-latitude seas are predicted to experience the impacts of ocean acidification (i.e. absorption of CO2 by the oceans leading to acidification of seawater) within the next 40 years. Accompanied by increases in seawater temperatures, elevated levels of CO2 have the potential to disrupt an ecosystem of organisms within the Antarctic that have evolved under stable environmental conditions for the last 10-14 million years. In fact, many of the adaptations of polar species to cope with living in sub-zero conditions make them particularly vulnerable to warming. Antarctic species therefore been identified as potentially some of the most vulnerable groups of organisms to climate change; however, we currently lack the research that establishes the species’ relative sensitivity to the combined effects of elevated temperature and CO2 developed from climate model projections. This is especially true for Antarctic fishes and we have no data for early life stages of these fishes. Funded through the National Science Foundation (ANT-1142122), we are investigating the interactive effects of elevated CO2 and ocean warming (OW) on early development of Antarctic fishes. Our research to date has focused on two species, the naked dragonfish, Gynodraco acuticeps, and the emerald rockcod, Trematomus bernacchii and examines the molecular, biochemical, physiological and behavioural mechanisms available to embryos, larvae and juvenile fishes to cope with OA and OW.



Flynn et al. 2015. Ocean acidification exerts negative effects during warming conditions in a developing Antarctic fish.

Breitburg et al. 2015. And on top of all that… Coping with ocean acidification in the midst of many stressors.

Todgham and Stillman 2013. Physiological responses to shifts in multiple environmental stressors – relevance in a changing world.